

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Physics

Course

Field of study Year/Semester

Aerospace Engineering 1/2

Area of study (specialization) Profile of study

- general academic Level of study Course offered in

First-cycle studies polish

Form of study Requirements full-time compulsory

Number of hours

Lecture Laboratory classes Other (e.g. online)

15 15 0

Tutorials Projects/seminars

15 0

Number of credit points

3

Lecturers

Responsible for the course/lecturer: Responsible for the course/lecturer:

Ewa Chumnicka dr inż. Emilia Piosik

Instytut Badań Materiałowych i Inżynierii email: emilia.piosik@put.poznan.pl

Kwantowej, Zakład Inżynierii i Metrologii Kwantowej tel.: 61 6653326

ul. Piotrowo 3 Wydział Inżynierii Materiałowej i Fizyki

Technicznej

ul. Piotrowo 3

mgr inż. Anna Dychalska

email: anna.dychalska@put.poznan.pl

tel.: 61 6653304

Instytut Badań Materiałowych i Inżynierii Kwantowej, Zakład Spektroskopii Optycznej

Prerequisites

1. Basic knowledge of secondary school physics and mathematics

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- 2. Ability to solve elementary problems in physics based on own knowledge and obtaining information from specified sources
- 3. Understanding the need to broaden own competences and willingness to cooperate within a group

Course objective

- 1. Familiarizing students with the basic concepts and physical laws in classical physics, including their applications in technical sciences
- 2. Developing students skills in solving problems in technical physics, noticing its potential applications in the studied field
- 3. Familiarization with the elements of the technique of physical measurements and analysis of their results based on the knowledge obtained.

Course-related learning outcomes

Knowledge

- 1. Has knowledge in mathematics including algebra, analysis, theory of differential equations, analytical geometry and being the basis for understanding issues in the field of physics
- 2. Has knowledge of physics, including the basics of classical mechanics, optics, electricity and magnetism, solid state physics, thermodynamics, necessary to understand theoretical issues and constructions used in aircraft

Skills

1. Is able to use with understanding various sources of knowledge as well as analyze obtained information and draw conclusions from them

Social competences

1. Understands the need of critical evaluation of knowledge and is able to independently develop and expand own competences

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lecture: written and/or oral exam

Exercises: evaluation of exercises' solutions, final test.

Laboratory: current control of theoretical knowledge and evaluation of reports

Programme content

- Mechanical waves (wave refraction and reflection, diffraction and interference phenomenon, Doppler effect, basics of acoustics),
- Gravitational interactions,

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- Electric field (Coulomb's law, electric field strength and potential, electric field strength work),
- Magnetic field (Lorentz force, electrodynamic force),
- Electromagnetic induction (flux, Faraday's law, Lenz's rule),
- electromagnetic waves (Maxwell equations),
- Basics of fluid mechanics

PART - 66 (THEORY - 22.5 hours, PRACTICE - 11.25 hours)

MODULE 2. PHYSICS

2.4 Optics (light)

Physical properties of light; speed of light;

The laws of reflection and refraction: reflection on a flat surface, reflection through mirrors

spherical, refraction, lenses;

Fiber optic technique. [2]

2.5 Wave motion and sound

Wave motion: mechanical waves, sinusoidal wave motion, interference phenomena, standing waves;

Sound: speed of sound, sound production, intensity, pitch and quality, Doppler effect [2]

Teaching methods

Lecture: multimedia presentation supplemented with examples on the board

Exercises: task analysis and solving on the board (teamwork possible)

Laboratory: student's own work at the measuring stand (practical exercises) under the supervision and with a small help of the teacher

Bibliography

Basic

- 1. D. Halliday, R. Resnick, J. Walker, "Podstawy fizyki" t. I IV, PWN, Warszawa 2005.
- 2. J. Massalski, M. Massalska, "Fizyka dla inżynierów" t. I, WNT, Warszawa 2006.
- 3. J. Orear, "Fizyka", t. 1-2, WNT, Warszawa 1990.

Additional

1. K. Jezierski, B. Kołodka, K. Sierański, "Fizyka. Zadania z rozwiązaniami. Cz. 1 Mechanika", Oficyna Wyd. Scripta, Wrocław 2000 K.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

2. Jezierski, B. Kołodka, K. Sierański, "Fizyka. Zadania z rozwiązaniami. Cz. 2 Termodynamika, elektryczność i magnetyzm, fizyka kwantowa", Oficyna Wyd. Scripta, Wrocław 1999

Breakdown of average student's workload

	Hours	ECTS
Total workload	78	3,0
Classes requiring direct contact with the teacher	64	2,5
Student's own work (literature studies, preparation for	14	0,5
laboratory classes/tutorials, preparation for tests) ¹		

_

 $^{^{\}rm 1}$ delete or add other activities as appropriate